Algebra
23=8; 33=9; 43=64; 53=125; 63=216; 73=343; 83=512; 93=729; 103=1000
- (a+b)2=a2+2ab+b2
- (a-b)2=a2-2ab+b2
- (a+b)2=(a-b)2+4ab
- (a-b)2=(a+b)2-4ab
- a2+b2=(a-b)2+2ab
- a2+b2=(a+b)2-2ab
- a2-b2=(a+b)(a-b)
- 2(a2+b2)=(a+b)2+(a-b)2
- ab=((a+b)/2)2-((a-b)/2)2
-
(a+b)3=a3+3a2b+3ab2+b3
-
(a-b)3=a3-3ab2+3ab2-b3
-
(a+b)3=a3+b3+3ab(a+b)
-
(a-b)3=a3-b3-3ab(a-b)
-
a3+b3=(a+b)3-3ab(a+b)
-
a3+b3=(a+b)(a2-ab+b2)
-
a3-b3=(a-b)3+3ab(a-b)
-
a3-b3=(a-b)(a2+ab+b2)
-
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
-
a2+b2+c2=(a+b+c)2-2(ab+bc+ca)
-
ab+bc+ca=((a+b+c)2-(a2+b2+c2))/2
-
4ab=(a+b)2-(a-b)2
Measurement
litre,
Milli,centi,deci, metre,deca,hecto,kilo
gram,
Multiply by 10 in each step<=||=>divided by 10 in each step
23=8; 33=9; 43=64; 53=125; 63=216; 73=343; 83=512; 93=729; 103=1000
- (a+b)2=a2+2ab+b2
- (a-b)2=a2-2ab+b2
- (a+b)2=(a-b)2+4ab
- (a-b)2=(a+b)2-4ab
- a2+b2=(a-b)2+2ab
- a2+b2=(a+b)2-2ab
- a2-b2=(a+b)(a-b)
- 2(a2+b2)=(a+b)2+(a-b)2
- ab=((a+b)/2)2-((a-b)/2)2
- (a+b)3=a3+3a2b+3ab2+b3
- (a-b)3=a3-3ab2+3ab2-b3
- (a+b)3=a3+b3+3ab(a+b)
- (a-b)3=a3-b3-3ab(a-b)
- a3+b3=(a+b)3-3ab(a+b)
- a3+b3=(a+b)(a2-ab+b2)
- a3-b3=(a-b)3+3ab(a-b)
- a3-b3=(a-b)(a2+ab+b2)
- (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
- a2+b2+c2=(a+b+c)2-2(ab+bc+ca)
- ab+bc+ca=((a+b+c)2-(a2+b2+c2))/2
- 4ab=(a+b)2-(a-b)2
Measurement
litre,
Milli,centi,deci, metre,deca,hecto,kilo
gram,
Multiply by 10 in each step<=||=>divided by 10 in each step
Basic Trigonometry
- sinϴ=opposite/hypotenuse
- cosϴ=adjacent/hypotenuse
- tanϴ=opposite/adjacent
- cotϴ=adjacent/opposite
- cosecϴ=hypotenuse/opposite
- secθ=hypotenuse/adjacent
- sinθ/cosθ=tanθ
- secθ/cosecθ=tanθ
- cosθ/sinθ=cotθ
- cosecθ/secθ=cotθ
- sinθ=1/cosecθ
- cosθ=1/secθ
- tanθ=1/cotθ
- cotθ=1/tanθ
- cosecθ=1/sinθ
- secθ=1/cosθ
- sin2ϴ+cos2ϴ=1
- sec2ϴ-tan2ϴ=1
- cosec2ϴ-cot2ϴ=1
- sin(900-ϴ)=cosϴ
- cos(900-ϴ)=sinϴ
- tan(900-ϴ)=cotϴ
- cot(900-ϴ)=tanϴ
- cosec(900-ϴ)=secϴ
- sec(900-ϴ)=cosecϴ
- sinϴ=opposite/hypotenuse
- cosϴ=adjacent/hypotenuse
- tanϴ=opposite/adjacent
- cotϴ=adjacent/opposite
- cosecϴ=hypotenuse/opposite
- secθ=hypotenuse/adjacent
- sinθ/cosθ=tanθ
- secθ/cosecθ=tanθ
- cosθ/sinθ=cotθ
- cosecθ/secθ=cotθ
- sinθ=1/cosecθ
- cosθ=1/secθ
- tanθ=1/cotθ
- cotθ=1/tanθ
- cosecθ=1/sinθ
- secθ=1/cosθ
- sin2ϴ+cos2ϴ=1
- sec2ϴ-tan2ϴ=1
- cosec2ϴ-cot2ϴ=1
- sin(900-ϴ)=cosϴ
- cos(900-ϴ)=sinϴ
- tan(900-ϴ)=cotϴ
- cot(900-ϴ)=tanϴ
- cosec(900-ϴ)=secϴ
- sec(900-ϴ)=cosecϴ
Simple interest
-
Interest(I)=Ptr/100
-
Rate of interest(r)=I100/(Pt)
-
Principal(P)=I100/tr
-
Time(t)=I100/Pr
- Interest(I)=Ptr/100
- Rate of interest(r)=I100/(Pt)
- Principal(P)=I100/tr
- Time(t)=I100/Pr
Compound Interest including principal
- Compound Interest including principal(I)=P(1+r/100)t
Compound Interest including principal
- Compound Interest including principal(I)=P(1+r/100)t
Arithmetic
- dividend=(divider x quotient)+remainder
- L.C.M.=(first number x second number)/G.C.D.
- G.C.D.=(first number x second number)/L.C.M.
- first number=(L.C.M. x G.C.D.)/Second number
- Second number=(L.C.M. x G.C.D.)/First number
- Range of rectangle=2x(Length+width)
- area of rectangle=Length x width
- width of rectangle=area/Length
- length of rectangle=area/width
- diagonal of rectangle=√(Length2+width2)
- dividend=(divider x quotient)+remainder
- L.C.M.=(first number x second number)/G.C.D.
- G.C.D.=(first number x second number)/L.C.M.
- first number=(L.C.M. x G.C.D.)/Second number
- Second number=(L.C.M. x G.C.D.)/First number
- Range of rectangle=2x(Length+width)
- area of rectangle=Length x width
- width of rectangle=area/Length
- length of rectangle=area/width
- diagonal of rectangle=√(Length2+width2)
square
- range of square=4 x length of a side
- area of a square=side x side
- diagonal of a side=side x √2
- area of a square= 1/2 x diagonal2
- side of a square= range/4=√area
- range of square=4 x length of a side
- area of a square=side x side
- diagonal of a side=side x √2
- area of a square= 1/2 x diagonal2
- side of a square= range/4=√area
triangle
- adjacent of triangle=2 x area/height
- area of a triangle=1/2 x adjacent x height
- height of a triangle=2 x area/adjacent
- area of a equilateral triangle=√3/4 x side2
- height of equilateral triangle=√3/2 x side
- height of isosceles triangle=√((square of any one side between equal sides)/(square of half of adjacent))
- area of a zodiacal triangle= √(s(s-a)(s-b)(s-c)) [here s is semi range of that triangle; and a,b,c are lengths of three of three sides]
- adjacent of triangle=2 x area/height
- area of a triangle=1/2 x adjacent x height
- height of a triangle=2 x area/adjacent
- area of a equilateral triangle=√3/4 x side2
- height of equilateral triangle=√3/2 x side
- height of isosceles triangle=√((square of any one side between equal sides)/(square of half of adjacent))
- area of a zodiacal triangle= √(s(s-a)(s-b)(s-c)) [here s is semi range of that triangle; and a,b,c are lengths of three of three sides]
parallelogram,trapezium,rhombus
- area of parallelogram=adjacent x height
- area of trapezium=1/2 x (summation of parallel sides x distance of
- parallel sides)
- area of rhombus=1/2 x multiplication of diagonals
- area of parallelogram=adjacent x height
- area of trapezium=1/2 x (summation of parallel sides x distance of
- parallel sides)
- area of rhombus=1/2 x multiplication of diagonals
circle
π=pi
π=circumference/radius=22/7
circumference=π x diameter
diameter(d)=circumference/π
radius=circumference/(2π)
range of semi circular shape=πr+2r
area(A)=πr2
r=√(A/π)= √(7A/22 )
radius of inner circle of equilateral triangle=side/(2√3)
diameter of inner circle of equilateral triangle=side/√3
π=pi
circumference=π x diameter
diameter(d)=circumference/π
radius=circumference/(2π)
range of semi circular shape=πr+2r
area(A)=πr2
r=√(A/π)= √(7A/22 )
radius of inner circle of equilateral triangle=side/(2√3)
diameter of inner circle of equilateral triangle=side/√3
3D SHAPES
cuboid
Lateral surface area of cuboid = 2h(l+b)
total surface area= 2(lb+hl+hb)
volume=adjacent area x height
cube
total surface area of a cube =6 x side2
volume=side3
diagonal of a cube=√3 x side
Prism
Lateral surface area of Prism= Range of adjacent x height
total surface area = Lateral surface area + 2 x adjacent area
volume = adjacent area x height
Cylinder
adjacent surface area= πr2
Lateral surface area of cylinder=circumference x height
total surface area= 2 x adjacent surface area + Lateral surface area
volume of tube=adjacent surface area x height
Hollow tube
outer radius=r1 ,inner radius=r2 , height =h
volume=π(r12 -r22 )h
area of inner and outer curved face= 2π(r1+r2)h
right pyramid
Lateral surface area of right pyramid= 1/2 x adjacent surface area x height
total surface area of right pyramid=adjacent surface area + Lateral surface area
volume=1/3 x adjacent surface x height
each surface of regular tetrahedron=√3/4 x a2
total surface of regular tetrahedron=4 x √3/4 x a2
cone
Lateral surface area of cone=πr x slant height=1/2 x adjacent circumference x slant height
total surface= adjacent area+Lateral surface area
volume=1/3 x adjacent area x height
slant height=√(radius2+height2)
sphere
area of total surface=4πr2
volume=4/3πr3
area of total surface of solid semi sphere=3πr2
volume of solid semi sphere=2/3πr3
Lateral surface area of cuboid = 2h(l+b)
total surface area= 2(lb+hl+hb)
volume=adjacent area x height
Lateral surface area of Prism= Range of adjacent x height
total surface area = Lateral surface area + 2 x adjacent area
volume = adjacent area x height
cube
total surface area of a cube =6 x side2
volume=side3
diagonal of a cube=√3 x side
Prism
total surface area = Lateral surface area + 2 x adjacent area
volume = adjacent area x height
Cylinder
adjacent surface area= πr2
Lateral surface area of cylinder=circumference x height
total surface area= 2 x adjacent surface area + Lateral surface area
volume of tube=adjacent surface area x height
area of total surface=4πr2
volume=4/3πr3
area of total surface of solid semi sphere=3πr2
volume of solid semi sphere=2/3πr3
total surface area= 2 x adjacent surface area + Lateral surface area
volume of tube=adjacent surface area x height
Hollow tube
outer radius=r1 ,inner radius=r2 , height =h
volume=π(r12 -r22 )h
area of inner and outer curved face= 2π(r1+r2)h
right pyramid
Lateral surface area of right pyramid= 1/2 x adjacent surface area x height
total surface area of right pyramid=adjacent surface area + Lateral surface area
volume=1/3 x adjacent surface x height
each surface of regular tetrahedron=√3/4 x a2
total surface of regular tetrahedron=4 x √3/4 x a2
cone
Lateral surface area of cone=πr x slant height=1/2 x adjacent circumference x slant height
total surface= adjacent area+Lateral surface area
volume=1/3 x adjacent area x height
slant height=√(radius2+height2)
sphere
volume=4/3πr3
area of total surface of solid semi sphere=3πr2
volume of solid semi sphere=2/3πr3
Comments
Post a Comment